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Why a PIM daemon

every application loads own instance of pim data
(addressbook, calendar)

change notification only works when pim data are
saved on disk

locking is not available for all resources

...

Concept for a PIM Daemon – p.1



Basics

implemented as DCOP service (KDED module?)

provides interfaces for accessing
addressbook
calendar
notes
emails (?)

kabc/kcal become wrapper libs around DCOP
service
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The daemon
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Tasks of the daemon

keep all data in memory (loaded/saved by
kresources)

handling resources (add/edit/remove)

locking of resources/contacts/events/todos etc.

search methods (e.g. all contacts starting with ’A’; all
events between today and tomorrow)

data transfer

change notification
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Tasks of the wrapper libs

hide the DCOP communication

provide easy to use API

offer components for common tasks (e.g. search
dialogs)
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TODO: KResource Framework

cleanup API

make everything asynchronous

let it handle large amount of data

support of subresources (?)
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TODO: PIM daemon

writing prototype (in osnabrueck?)

define DCOP interfaces

implement interfaces

implement locking/notification code
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TODO: wrapper libs

cleanup APIs

make libkcal value based (necessary for DCOP)

move all functionality code to the server and replace
it by DCOP calls

add components (different kinds of search/selection
widgets)
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Let’s start a discussion...
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