
Concept for a PIM Daemon
Tobias Koenig



Why a PIM daemon

every application loads own instance of pim data
(addressbook, calendar)

change notification only works when pim data are
saved on disk

locking is not available for all resources

...

Concept for a PIM Daemon – p.1



Basics

implemented as DCOP service (KDED module?)

provides interfaces for accessing
addressbook
calendar
notes
emails (?)

kabc/kcal become wrapper libs around DCOP
service

Concept for a PIM Daemon – p.2



The daemon

Concept for a PIM Daemon – p.3



Tasks of the daemon

keep all data in memory (loaded/saved by
kresources)

handling resources (add/edit/remove)

locking of resources/contacts/events/todos etc.

search methods (e.g. all contacts starting with ’A’; all
events between today and tomorrow)

data transfer

change notification

Concept for a PIM Daemon – p.4



Tasks of the wrapper libs

hide the DCOP communication

provide easy to use API

offer components for common tasks (e.g. search
dialogs)

Concept for a PIM Daemon – p.5



TODO: KResource Framework

cleanup API

make everything asynchronous

let it handle large amount of data

support of subresources (?)

Concept for a PIM Daemon – p.6



TODO: PIM daemon

writing prototype (in osnabrueck?)

define DCOP interfaces

implement interfaces

implement locking/notification code

Concept for a PIM Daemon – p.7



TODO: wrapper libs

cleanup APIs

make libkcal value based (necessary for DCOP)

move all functionality code to the server and replace
it by DCOP calls

add components (different kinds of search/selection
widgets)

Concept for a PIM Daemon – p.8



Let’s start a discussion...

Concept for a PIM Daemon – p.9


	Why a PIM daemon
	Basics
	The daemon
	Tasks of the daemon
	Tasks of the wrapper libs
	TODO: KResource Framework
	TODO: PIM daemon
	TODO: wrapper libs
	Let's start a discussion...

