

Akonadi Filtering Framework
Current State

07.Jul.2009
Szymon Tomasz Stefanek

Source tree in

playground/pim/akonadi/filter

CMakeLists.txt
Global compilation rules: builds everything in the project
No particular configuration needed.

Subdirectories:

akonadi/filter
The filtering framework libraries.
(The source directory tree emulates the installed one)

agent
The filtering agent

console
A small demo program

Location and structure of the sources

Two libraries:

libakonadi-filter.so

The filtering framework core.
Contains the filter tree model, the Sieve
decoder and encoder and the tools needed
for filter customisation.

Akonadi::Filter::*
Akonadi::Filter::IO::*

libakonadi-filter-ui.so

The user interface for filter editing
And the tools needed for filter customisation.

Akonadi::Filter::UI::*

The filtering framework libraries

A filter is a program.
The memory model is a tree.

The filter model

Program
inherits RuleList

Rule

Condition

QList<Action *>

Rule

Condition

QList<Action *>

A filtering program is a list of rules.
The rules are applied in sequence until a stop
condition is encountered or an error occurs.

The filter model

Program
inherits RuleList

Rule

Condition

QList<Action *>

Rule

Condition

QList<Action *>

A rule is made of a condition and a list of
actions. If the condition matches() then the
actions are executed in sequence.
The condition is itself a tree: no limit to nesting.

The filter model

Rule

Condition::And

QList<Action *>

Condition::Not

Condition::PropertyTest

Condition::PropertyTest

Non leaf condition nodes:
And, Or, Not

(Current) leaf condition nodes:
PropertyTest, True, False

The filter model

Condition::And

Condition::Not

Condition::PropertyTest

Condition::PropertyTest

Condition::Or

Condition::PropertyTest

The PropertyTest condition encodes a test on Data
The most general format of a test is

Function(DataMember) Operator ConstantOperand

ValueOfHeader(“From”) Contains “foo@bar.org”

The DataType of the components must agree:

Function must accept the DataType of DataMember,
Operator must accept the result DataType of Function
on the left...

The filter model

mailto:foo@bar.org

The available Function, DataMember and Operator
objects are stored in the ComponentFactory

The ComponentFactory is the primary mean of
customisation of filters.

It's responsible of:

- creating instances of filter tree nodes
(so you can provide custom ones)

- providing the description of the available
Condition and Action types so
- IO layer knows what/how to decode/encode
- UI facilities can provide editors

The filter model

In the case of Conditions, for example, you can:

- register your own Function objects
(say... “sizeof”)

- register your own DataMember objects
(say... “any attachment”)

- register your own Operator objects
(say... “matchesWildcard”)

Or even

- provide a fully custom condition which
uses a totally different internal test model

“Filters operating on different items (or
mimetypes) may provide different DataMember
objects”

The filter model

Actions follow a similar cusomization scheme. By
now only few actions are implemented.

ActionTypeStop
just stops unconditionally (default)

ActionTypeRuleList
a fully nested sub-filter!

ActionTypeCommand
generic command stored in Sieve format
keep, download, doNotDownload...

moveToFolder will be probably “hidden”
here.

The ComponentFactory inside the library provides a set of
basic actions which will be registered “on demand”. More
advanced actions can be registered “on-the-fly” by the
specific filter implementation.

The filter model

The IO namespace (io subdirectory) contains
filter encoding and decoding classes.

Encoder
SieveEncoder
AFLEncoder
WhateverEncoder

Decoder
SieveDecoder
AFLDecoder
WhatewerDecoder

Actually only Sieve IO is complete. Othe formats can be
“plugged in” here. AFL (Akonadi Filtering Language) is
something that could be finished before GSoC ends and
could end up being “nicer” than Sieve (which has its
drawbacks)...

The filter model

Note that until now, nothing really
depends on Akonadi yet.

This part of the filtering model could be
even used standalone.

The filter model

To execute a filter you “throw” a Data
subclass through it.

The Data object wraps the real data being
filtered.

This is where the dependency on Akonadi MAY be
plugged in at agent level.

In the Agent source there will be a DataRfc822
class which wraps an Akonadi::Item with a
KMime::Message payload.

The POP3 module might wrap a different data
object: it's enough that the Data interface is
implemented.

The filter model

The akonadi/filter/ui contains the sources for
the libakonadi-filter-ui library.

The library is rooted at the

Akonadi::Filter::UI

Namespace.

Obviously:
- every filtering program is bound to use

libakonadi-filter.so

- only UI programs will take advantage of
libakonadi-filter-ui.so

Filter Editing

Customization is provided via the

EditorFactory

class.

EditorFactory role is very similar to
ComponentFactory in the filter model
library.

EditorFactory actually depends on a
specific ComponentFactory implementation.

Filter Editing

The filter model is “mirrored” in a tree of
UI classes.

Filter Editing

ProgramEditor
related to RuleListEditor

RuleEditor

ConditionEditor

ActionEditor

RuleEditor

ConditionEditor

ActionEditor

The current implementation use a “vertical”
editing approach:

- there is no list box on the left.
- the rules appear one after another in

an object resembling a QToolBox

QToolBox wasn't customizable enough: I had to write my
own “stacked tools” widget.

Vertical editing:
- makes good use of space

(thing of nested sub-programs)
- gives the impression of really editing

a program = sequence of rules

Filter Editing

You can take a look at the editor by using the demo
console.

- Via akonadiconsole create an instance
of the filtering agent

- Run akonadi_filter_console

- Click on “add filter”

The editor is on the second tab, more about
the first tab later.

Please note that the editor is still “fragile”, especially
the constant value boxes in the conditions.

Filter Editing

The main akonadi filtering agent in in the
agent/ subdirectory.

filteragent.cpp / filteragent.h:
FilterAgent: public Akonadi::AgentBase

- It exposes the FilterAgent D-Bus
control interface

- It hooks on the itemAdded() signal
In order to apply the filters.

(this is the part we need to fix)

The filtering agent

The agent contains multiple
ComponentFactory instances: one for each
mimetype we want to filter.

When you create a filter via
akonadi_filter_console you need to specify
its mimetype (actually only message/rfc822
works).

Each filter has an unique identifier which
the D-Bus calls require in order to
operate.

The filtering agent

You can look at the D-Bus interface via
qdbusviewer.

The methods are commented in filteragent.h

createFilter(<id>,<mime>,<sieveSource>)
deleteFilter(<id>)
attachFilter(<id>,<collectionIds>)
detachFilter(<id>,<collectionIds>)
getFilterProperties(<id>)

The filtering agent

A filter can be “attached” to multiple
collections.

Actually this is implemented as

- enable notifications for collection X

- handle itemAdded()

This has the drawback of items being
temporairly visible in a collection and
then possibly disappear after the filter
has been applied. We possibly need a server
modification here.

The filtering agent

The first tab in the akonadi_filter_console
contains:

- The specification of the filter id
Actually you create it manually
as it's an arbitrary string.
We might want a naming protocol here

- The specification of the collections
that the filter is hooked to.

The filtering agent

That's basically it.

There are many gory implementation
details, but this is the general
picture of how it works now.

I need your advice to solve:

- the problem of hooking the filter
an item arrival

- the (easier) problem of manual
filtering (Thomas suggests a D-Bus
call for this).

- the problem of “no-filtering” for
manual item movements (tags?)

Yeah

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

